弹性力学中一个说明局部效应的原理,虽然已经有大量实例验证,但至今还没有严格证明。
简介
圣维南原理(Saint Venant’s Principle)是弹性力学的基础性原理,是法国力学家圣维南于1855年提出的。其内容是:分布于弹性体上一小块面积(或体积)内的荷载所引起的物体中的应力,在离荷载作用区稍远的地方,基本上只同荷载的合力和合力矩有关;荷载的具体分布只影响荷载作用区附近的应力分布。还有一种等价的提法:如果作用在弹性体一小块面积(或体积)上的荷载的合力和合力矩都等于零,则在远离荷载作用区的地方,应力就小得几乎等于零。不少学者研究过圣维南原理的正确性,结果发现,它在大部分实际问题中成立。因此,圣维南原理中“原理”二字,只是一种习惯提法。 在弹性力学的边值问题中,严格地说在面力给定的边界条件及位移给定的边界条件应该是逐点满足的,但在数学上要给出完全满足边界条件的解答是非常困难的。另一方面,工程中人们往往只知道作用于物体表面某一部分区域上的合力和合力矩,并不知道面力的具体分布形式n因此,在弹性力学问题的求解过程中,一些边界条件可以通过某种等效形式提出。这种等效将出带来数学上的某种近似,但人们在长期的实践中发现这种近似带来的误差是局部的,这是法国科学家圣维南首先提出的。
要n
一、进行替换的两个力系必须是刚体力学的“等效”力系;二、力系替换的表面必须小,在替换表面附近的解失去精度。
意义
圣维南原理在实用上和理论上都有重要意义。在解决具体问题时,如果只关心远离荷载处的应力,就可视计算或实验的方便,改变荷载的分布情况,不过须保持它们的合力和合力矩等于原先给定的值。圣维南原理是定性地说明弹性力学中一大批局<效应的第一个原理。