动量守恒定律
动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律。最初它们是牛顿定律的推论, 但后来发现它们的适用范围远远广于牛顿定律,是比牛顿定律更基础的物理规律, 是时空性质的反映。其中,动量守恒定律由空间平移不变性推出,能量守恒定律由时间平移不变性推出,而角动量守恒定律则由空间的旋转对称性推出。
定律说明
一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律。1.动量守恒定律是自然界中最重要最普遍的守恒定律之一,是一个实验规律,也可用牛顿第三定律结合动量定理推导出来。2.相互间有作用力的物体系称为系统,系统内的物体可以是两个、三个或懈多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统。[1]定律特点
矢量性
动量是矢量。动量守恒定律的方程是一个矢量方程。通常规定正方向后,能确定方向的物理量一律将方向表示为“+”或“-”,物理量中只代入大小:不能确定方向的物理量可以用字母表示,若计算结果为“+”,则说明其方向与规定的正方向相同,若计算结果为“-”,则说明其方向与规定的正方向相反。瞬时性
动量是一个瞬时量,动量守恒定律指的是系统任一瞬间的动量和恒定。因此,列出的动量守恒定律表达式m1v1+m2v2+…=m1v1ˊ+m2v2ˊ+…,其中v1,v2…都是作用前同一时刻的瞬时速度,v1ˊ,v2ˊ都是作用后同一时刻的瞬时速度。只要系统满足动量守恒定律的条件,在相互作用过程的任何一个瞬间,系统的总动量都守恒。在具体问题中,可根据任何两个瞬间系统内各物体的动量,列出动量守恒表达式。相对性
物体的动量与参考系的选择有关。通常,取地面为参考系,因此,作用前后的速度都必须相对于地面。普适性
它不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。适用性
适用范围
动量守恒定律是自然界最普遍、最基本的规律之一。不仅适用于宏观物体的低速运动,也适用与微观物体的高速运动。小到微观粒子,大到宇宙天体,无论内力是什么性质的力,只要满足守恒条件,动量守恒定律总是适用的。适用条件
1.系统不受外力或者所受合外力为零;2.系统所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统的动量可看成近似守恒;3.系统总的来看不符合以上条件的任意一条,则系统的总动量不守恒。但是若系统在某一方向上符合以上条件的任意一条,则系统在该方向上动量守恒。[2] 注意:(1)区分内力和外力 碰撞时两个物体之间一定有相互作用力,属于一个系统的两个物体之间的力叫做内力;系统以外的物体施加i力,叫做外力。(2)在总动量一定的情况下,每个物体的动量可以发生很大变化 例如:静止的两辆小车用细线相连,中间有一个压缩的弹簧。烧断细线后,由于相互作用力的作用,两辆小车分别向左右运动,它们都获得了动量,但动量的矢量和为零。(3)动量与动能定理的区别动量定理:p=
反映了力对时间的累积效应,是力在时间上的积累。为矢量方程式,既有大小又有方向。动能定理:

数学表达式
(1)p=p′即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量。(2)Δp=0即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:
数学推导







实验验证
稳定的重核吸收中子后处于不稳定状态,其中的中子会转变成为质子同时放出一个β粒子,这种现象称为β衰变。在历史上,对β衰变机理的探索导致了中微子的发现。当时,一个难以回答的问题是:β衰变过程中所产生的电子从何而来。人们已确认原子核里面不可能存在电子,因此只能认为β衰变所放出的电子是临时产生的,即一个核内中子放出一个电子并转变为一个质子。但进一步的分析表明,这种想法存在着严重的缺陷,因为它明显地违反了能量守恒定律、角动量守恒定律和动量守恒定律桃话愣言,放射性原子核所发射出的粒子都要带走大量的能量,由E=mc2知,这是由于原子核有一小部分质量转换成了能量。换句话说,在发射粒子的过程中,原子核总是会损失一小部分质量。但令人困惑不解的是,通常在β衰变过程中发射出的β粒子(电子)所携带的能量不够大,并不与粒子所损失的质量相适应,而且并不是所有的电子的能量都一样,发射出的电子的能量有一个很宽的范围——即有一个很宽的能谱,其中最大的能量(只有少数电子具有这样大的能量)才等于放射过程中母核与子核的能量差(即蜕变能)。对于β衰变过程中的绝大数电子来说,其能量并不胗谡庖蛔畲竽芰俊U庖簿褪撬担在前面所设想的β衰变过程不能使得反应前后能量守恒。“失踪”了的能量跑到哪儿去了呢?尽管人们曾提出了一些可能的解释方案,但是这些设想又为进一步的实验所否定。因此,人们不得不承认前面设想的β衰变过程不符合实际。 为了解决上述矛盾,验证能量守恒定律,奥地利物理学家泡利(1900—1958)在1930年提出了一个大胆的设想:如果认为在β衰变过程中还伴随着一种未被查觉的未知粒子的话,那么上面所列举的矛盾都可立即获得解决。亦就是说,如果β衰变遵守能量守恒定o的话,那么在衰变过程中应当还有一种质量极小又不带电荷的粒子存在,泡利是在1930年12月给迈特纳和盖革的信中首先提出这个假设的。 泡利的假设提出后不久,1933年费米就在此基础上提出了β衰变理论,并把泡利预言的这样一种不带电的、质量极小的粒子命名为:“中微子”(即中性的小家伙),以区别中子,并用n表示.他认为根据中微子假设,β衰变实际上是中子转变为质子、电子和中微子的过程。后来人们知道,费米所说的中微子其实是“反中微子”。 中微子的假设非常成功,但是要观察它的存在却非常困难,由于它质量既小又不带电荷,与其它粒子间的相互作用非常弱,因而它总是顽固地不愿意表露自己。(据说平均地讲,一个中微子要穿透1000光年厚的固体铁“板”才与其它粒子发生相互作用,因此它可以毫不费力地穿过地球而不发生⒒。这一性能已被人们用来研究穿透地球的“中微子通讯”的可能性。)显然,中微子的这种个性使得确认它的存在成了一件极困难的事情。1953年,美国洛斯阿拉莫斯科学实验室的物理学爱莱因斯和柯万领导的物理学小组着手进行这种几乎不可能成功的探测。他们在美国原子能委员会所⒌淖糁窝侵奕凡纳河的一个大裂变反应堆进行探测。终于到1956年,也就是泡利提出这种粒子假设整整四分之一世纪以后,探测到反中微子,1962年又发现了另一种反中微子,中微子的发现说明,能量守恒定律在微观领域里也是完全适用的。碰撞守恒
碰撞是指物体间相互作用时间极短,而相互作用力很大的现象。在碰撞过程中,系统内物体相互作用的内力一般远大于外力,故碰撞中的动量守恒,按碰撞前后物体的动量是否在一条直线区分,有正碰和斜碰。中学物理一般只研究正碰。按碰撞过程中动能的损失情况区分,碰撞可分为三种:弹性碰撞
弹性碰撞前后系统的总动能不变,对两个物体组成的系统的正碰情况弊悖



















非弹性碰撞
非弹性碰撞,碰撞的动能介于前两者碰撞之间。[1] 碰撞中动能不守恒,只满足动量守恒,两物体的碰撞一般都是非弹性碰撞。完全非弹碰撞
完全非弹性碰撞,该碰撞中动能的损失最大,对两个物体组成的系统满足:
反冲

