步进电机与伺服电机使用心得
在调机过程中发现定位不准现象怎么办?把它拿下来呗!没什么可谈的是吧!一般有以下几方面原因引起: 1、改变方向时丢脉冲,表现为往任何一个方向都准,但一改变方向就累计偏差,并且次数越多偏得越多; 2、初速度太高,加速度太大,引起有时丢步; 3、在用同步带的场合软件补偿太多或太少; 4、马达力量不够; 5、控制器受干扰引起误动作; 6、驱动器受干扰引起; 7、软件缺陷; 针对以上问题分析如下: 1)一般的步进驱动器对方向和脉冲信号都有一定的要求,如:方向信号在第一个脉冲上升沿或下降沿(不同的驱动器要求不一样)到来前数微秒被确定,否则会有一个脉冲所运转的角度与实际需要的转向相反,最后故障现象表现为越走越偏,细分越小越明显,解决办法主要用软件改变发脉冲的逻辑或加延时。 2)由于步进电机特点决定初速度不能太高,尤其带的负载惯鼋洗笄榭鱿,建议初速度在1r/s以下,这样冲击较小,同样加速度太大对系统冲击也大,容易过冲,导致定位不准;电机正转和反转之间应有一定的暂停时间,若没有就会因反向加速度太大引起过冲。 3)根据实际情况调整被偿参数值,(因为同步带弹性形变较大,所以改变方向时需加一定的补偿)。 4)适当地增大马达电流,提高驱动器电压(注意选配驱动器)选扭矩大一些的马达。 5)系统的干扰引起控制器或驱动器的误动作,我们只能想办法找出干扰源,降低其干扰能力(如屏蔽,加大间隔距离等),切断传播途径,提高自身的抗干扰能力,常见措施: ①用双纹屏蔽线代替普通导线,系统中信号线与大电流或大电压变化导线分开布线,降低电磁干扰能力。 ②用电源滤波器把来自电网的干扰波滤掉,在条件许可下各大用电设备的输入端加电源滤波器,降低系统内各设备之间的干扰。 ③设备之间最好用光电隔离器件进行信号传送,在条件许可下,脉冲和呦蛐藕抛詈糜貌罘址绞郊庸獾绺衾虢行信号传送。在感性负载(如电磁继电器、电磁阀)两端加阻容吸收或快速泄放电路,感性负载在开头瞬间能产生10~100倍的尖峰电压,如果工作频率在20KHZ以上。 6)软件做一些容错处理,把干扰带来影响消除。
2、步进电机用驱动器细吆螅它的驱动脉冲由什么决定?
1、二相步进电机的每转脉冲数=200*细分数
2、三相步进电机的每转脉冲数=驱动器上标示的脉冲数
3、步进电机驱动器细分的作用是什么呢?~
步进电机驱动器细分的主要作用是提高步进电机的精确率。
通常细分有2,4,8,16,32,62,128,256,512....
在国外,对于步进系统,主要采用二相混合式步进电机及相应的细分驱动器。但在国内,广大用户对“细分”还不是特别了解,有的只是认为,细分是为了提高精度,其实不然,细主要是改善电机的运行性能,现说明如下:步进电机的细分控制是由驱动器精确控制步进电机的相电流来实现的,以二相电机为例,假如电机的额定相电流为3A,如果使用常规驱动器(如常用的恒流斩波方式)驱动该电机,电机每运行一步,其绕组内的 电流将从0突变为3A或从3A突变到0,相电流的巨大变化,必然会引起电机运行的振动和噪音。如果使用细分驱动器,在10细分的状态下驱动该电机,电机每运行一微步,其绕组内的电流变化只有0.3A而不是3A,且电流是以正弦曲线规律变化,这样就大大的改善了电机的振动和噪音,因此,在性能上的优点才是细分的真正优点由于细分驱动器要精确控制电机的相电流,所以对驱动器要有相当高的技术要求和工艺要求,成本亦会较高。注意,国内有一些驱动器采用“平滑”来取代细分,有的亦称为细分,但这不是真正的细分,望广大用户一定要分清两者的本质不同:
1.“平滑”并不精确控制电机的相流,只是把电流的变化率变缓一些,所以“平滑”并不产生微步,而细分的微步是可以用来精确定位的。
2.电机的相电流被平滑后,会引起电机力矩的下降,而细分控制不但不会引起电机力矩的下降,相反,力矩会有所增加。
4、关于步进电机的知识
步进电机各相轮流接入整步电流后所产生的步距角叫做该步进电机的基本步距角。 F 相步进电机有 F 个绕组,这 F 个绕组要均匀地镶嵌在定子上,因此定子的磁极数必定是 F 的整数倍,因此,转子转一圈的步数应该是 F 的整数倍;也就是说:3 相步进电机转一圈的步数是 3 的&数倍,4 相步进电机转一圈的步数是 4 的整数倍,5相步进电机转一圈的步数是 5 的整数倍;如果步进电机的基本步距角为 A ,转一圈的步数是 M ,步进电机的相数是 F 则有下述关系: A=360/M 由于上述机械对称原理,M 必然是相数 F 的整数倍,即: M=N*F 其中 N 是正整数。跟据&上分析可以看出,基本步距角是不能取任意值的。我们往往希望步进电机转一圈为 100 步或其倍数,这在 2/4 相和 5 相步进电机容易做到,但对于三相步进电机其基本步距角不可能做到转一圈为 100 步或 200 步,但可以是 300 步。
有些厂家所标的三相步进电机的步距角为 1.2 度或 3 度,相当每圈 300 步或 120 步,是 3 的整数倍,这种标注很正常。有些厂家所标注的三相步进电机的步距角为 1.8/0.9/0.72/0.36 度,相当每圈 200/400/500/1000 步,不是 3 的整数倍,所以这些厂家所标注的不是步进电机的基本步距角,而是步进驱动器每输入一个步进脉冲时步进电机的转角,或是步进电机转一圈时,步进驱动器输入的脉冲个数;其实这是步进驱动器带来的功能,厂家标注到步进电机上了;这种标注方法很容易造成迷惑,甚至有一些步进电机的销售商自己都讲不清楚.
5、步进电机和伺服电机的相数如何区分?
步进电机的细分是对电机本身而言还是对控制器而言?
细分是把驱动器发给电机的脉冲信号进行了细分,比如不加细分每个脉冲信号电机转1.8度,加2细分,每个脉冲电机转0.9度。所谓“相数”,就是线圈组数。所谓细分,就是驱动器在接到控制发来的每一个脉冲时,只给电机发几分之一个脉冲(用“脉冲”这个词不准确,实际是正弦波一个周期的几分之一)。
修改
6、分辨5线单极性步进电机接头
为了找出5线单极性步进电机各条引线的正确配置,事先需要做一番实际上很简单的考察。图1给出了5线步进电机的基本引线配置。 为了找出正确的引线顺序并使电机转动,需要一块电池和一段胶带(当然也需要一个5引线步进电机)。备好记号笔来标注引线以便分辨它们。按以下步骤操作: ①用数字万用表找到公共线。其他引线与 公共线之间的底璨饬恐刀枷嗤。 将此线连接到电池的V 。5V或6V就足够测试用了。 ②胶带粘贴到步进电机的输出铀上,并使它垂直于轴端伸出成为一个标志。此标志的作用在于判断电机是否转动。 ③任意挑出一条引线称之为相1。若将此线接地,则电机输出轴将做轻微的转动。现在步进电机被锁定在相1的位置上。 ④取另一根引线并将其接地,仔细观察输出轴上的胶带。如果输出轴向右轻微地旋转,那么此根引线是相2。 ⑤取另一根线并将其接地,仔细观察输出轴上的胶带。如果输出轴向左轻微地旋转,那么此根引线是相4。如图4所示。 ⑥再取另一根讲⒔其接地,仔细观察输出轴上胶带的运动状态。如果输出轴不旋转,那么此根引线就是相3。
附:步进电机动态指标及术语:
1、步距角精度:
步进电机每转过一个步距角的实际值与理论值的误差。用百分比表示:误差/步距角*100%。不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在15%以内。
2、失步:
电机运转时运转的步数,不等于理论上的步数。称之为失步。
3、失调角:
转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。
4、最大空载起动频率:
电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。
5、最大空载的运行频率:
机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。
6、运行矩频特性:
电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。如下图所示:
其它特性还有惯频特性、起动频率特性等。
电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。
其中,曲线3电流最大、或电压最高;曲线1电流最小、或电压最低,曲线与负载的交点为负载的最大速度点。
要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。
7、电机的共振点:
步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角1.8度)或在400pps左右(步距角为0.9度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振较多。
8、电机正反转控制:当电机绕组通电时序为AB-BC-CD-DA或()时为正转,通电时序为DA-CA-BC-AB或()时为反转。
步进电机原理(一)
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常羌虻ァK淙徊浇电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给户在产品选型、使用中造成许多麻烦。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大倩г谘⌒汀⑹褂谩⒓罢机改进时有所帮助。
感应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。
1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与僮映葜嵯叽砜。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A‘与齿5相对齐,(A‘就是A,齿5就是齿1)
旋转:如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何僖韵戮同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。由此可见:电机的位置和速度由导电次数(脉冲裕┖推德食梢灰欢杂关系。而方向由导电顺序决定。不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论跃荨2荒淹瞥觯旱缁定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩:电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F与(dФ/dθ)成正比
其磁通量Ф=Br*S Br为磁密,S为导磁面积F与L*D*Br成正比L为铁芯有效长度,D为转子直径Br=N稩/RN稩为励磁绕阻安匝数(电流脑咽)R为磁阻。力矩=力*半径力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态)因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。
二)感应子式步进电机
1、特点:感应子式步进电机与传统的反应式步进电机相比,墓股献子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。感应子式步牡缁某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C= ,D= . 一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相,而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,可以作二相电机绕组串联或并联使用。
2、分类感应子式步进电机以相数可分为槎相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内标准。
3、步进电机的静态指标术语相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A.步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过份采用减小气隙,增加激磁安匝来提高静力矩挡豢扇〉模这样会造成电机的发热及机械噪音。