螺纹设计基本要素

来源:百科故事网 时间:2020-12-19 属于: 机械设计

1948年11月18日,在华盛顿签署的统一螺纹协定奠定了被全球接受的螺纹标准基础。从此,统一螺纹是所有机加工紧固件英制螺纹的标准,并且在全球通用。

本部分 绍了美国乃至全球都认可的统一英制螺纹ASME标准。对各标准做了适当节选,以适合本书中的所有紧固件。

本部分技术内容精确,很少有原理解释和背景介绍。因此,IFI认为将本章内容介绍给螺纹基础知识了解较少的“外行”会十分有益。其目的是用通俗易懂的语言解释螺纹设计的更多特性,帮助技术人员更全面地了解螺纹的正确使用。

螺纹的基本特点

螺纹的作用是给予紧固件支撑和传递载荷的能力。

在设计和制作螺纹时,要考虑的几何特性和尺寸特性有超过125项之多。但是,工程师们只要熟悉其中的30种左右,就能晓各种螺纹并了解其性能。参见图1、图2和图3(A-1,A-2 和A-3 页)。另外,A-40 和 A-41页中图也有助于对本文的理解。

螺纹是在圆柱体外表面或内表面上以螺旋线形式出现的等截面的牙面。在圆柱体上的螺纹称作直螺纹或圆柱螺纹。在圆锥体或锥截体上的螺纹称作圆锥螺纹。外螺纹指螺栓、螺丝和螺柱的螺纹,内螺纹主要指螺母和自攻孔内的螺纹。

轴向截面内的螺纹结构称作螺纹牙型(轮廓),它由牙顶、牙底和牙侧三部分组成。螺纹牙顶在牙的顶部,牙底在底部,牙侧连接牙顶和牙底。原始三角形是指螺纹牙侧面经延伸在牙顶和牙底形成尖V型后所构成的三角形。原始三角形高度(H)是指牙顶尖到牙底尖的径向测量距离。对于统一螺纹,H为螺距乘以0.866025。H的主要作用是用于计算螺纹设计参数。

螺纹设计基本要素 title=

图1  UN 和 UNR 螺纹基本牙型

螺纹设计基本要素 title=

图2A  UN外螺纹设计牙型

螺纹设计基本要素 title=

图2B   UNR 外螺纹设计牙型

牙顶和牙底都符合尺寸要求的螺纹为完整(全)螺纹。如果牙顶或牙底成型不完全,称为不完整螺纹。这种螺纹发生在螺纹紧固件的端部和螺纹尾部,螺纹弯曲进入未攻螺纹的螺杆部分,或是在螺母和自攻孔的下沉面内。

螺距(P)是相邻牙对应两点间沿螺纹轴线的测量距离。统一螺纹是根据每英寸的牙数设计的,即每英寸长度内所出现的完整牙数。螺距是每英寸牙数的倒数。

对于外螺纹,牙顶处的直径称为大径,牙底处的直径称为小径。对于内螺纹则正好相反,牙顶处的为小径,牙底处的为大径。

牙侧与垂直于螺纹轴线的夹角称为牙侧角。当两牙侧角的角度相同时,该螺纹为对称螺纹(牙侧角称为牙型半角)。统一螺纹具有30°牙侧角,而且是对称的。常称作60°螺纹。

螺纹设计基本要素 title=

图 3  UN内螺纹设计牙型

中径是在牙厚与牙槽宽相等位置通过螺纹的理想圆柱的直径。对于理想螺纹,这两个宽度应该相等,均为螺距的一半。对于非理想螺纹,螺纹的实际中径(沿螺纹圆周或轴向任意位置处的测量值)会有变化,这种变化取决于螺纹牙型的实际偏差,此加工偏差要在允许的极限范围之内。因此在实际中,螺纹专家在中径的定义、测量和重要性方面可能会相互矛盾。但是,在螺纹设计和计算,加工刀具和模具生产以及螺纹通止量规和测量中,中径仍然是一仓匾参数。“理想”中径是中径圆柱的产物,其轴线就是螺纹轴线。

螺纹基本牙型建立了内螺纹和外螺纹的绝对边界。无论内螺纹还是外螺纹,突破了这一边界就会存在潜在的干涉,螺纹可能旋合不良。正是基于这一基本牙型,通过增加基本偏差和公差,来得到螺纹的极限尺寸。

基本偏差产生了配合螺纹间的最小间隙(国际公差标准)。即当内、外螺纹加工至其最大实体牙型时,内、外螺纹之间肯定会有一定的间隙。对于紧固件,基本偏差通常用于外螺纹上,即大径、中径和小径的最大值由于基本偏差的存在而小于基本尺寸;内螺纹的最小直径――其最大实体牙型――作为基本尺寸。公差是指为方便加工而允许尺寸变化的规定值。公差为在最大与最小允许极限值之间的变动量。因此,对于外螺纹,其最大实体尺寸减去公差(向螺纹轴线方向移动)定义为其最小实体牙型尺寸。对于内螺纹,其最大)实体尺寸加上公差(从螺纹毕咭瓶)定义为其最小实体尺寸。

 配合螺纹中,基本偏差与公差的组合决定了配合情况。配合是匹配螺纹间松紧程度的量度。间隙配合可以始终确保装配后的自由转动。过盈配合需要特定的螺纹尺寸限制值以使装配后内、外螺纹间产生过盈力。

当外螺纹紧固件装比肽诼菸坡菽富蜃怨タ资保完整螺纹的轴向接触距离为螺纹旋合长度。这些螺纹在径向上的接触距离称作螺纹的接触高度。螺纹旋合长度和接触高度都是计算螺纹强度的重要参数。

螺纹系列是几组彼此不同的直径-螺距组合,以特定直径系列和每英寸长度内的牙数来表示。对于紧固件,最常用的螺纹系列有统一粗牙、统一细牙和8牙系列。

螺纹的强度――即支持和传递载荷的能力。螺纹强度与四个应力区有关。拉伸应力区是通过螺纹的假定横截面,用于计算紧固件承受拉伸力的载荷。拉伸应力区等同于具有同一材料理论圆柱的横截面积,拉伸试验时,其粜敌阅苣艹惺艿韧的极限载荷。螺纹牙底区是外螺纹小径处的截面积。螺纹牙底区用于计算横向剪切或扭转力表示的紧固件强度。螺纹剪切区(内、外螺纹)是通过螺纹牙的有效面积,它与螺纹轴线平行,包括螺纹接触的整个长度。它承受剪切载荷,阻止螺纹脱扣。内螺纹的剪切面位于外粑频拇缶洞Γ外螺纹的剪切面位于内螺纹的小径处。

ANSI/ASME B1.7M标准给出了螺纹的术语、定义和符号。A-24页是从B1.7M摘出的,它适用于机加工紧固件统一英制螺纹。

螺纹选择指南

针对特定的使用条件,选择最佳螺纹时有三个因素需要考虑――螺纹牙型、螺纹系列和螺纹配合等级。

螺纹牙型

螺纹牙型多种多样。但对于英制系列机械紧固件,只有三种最重要-UN、UNR和UNJ。它们都是60°对称螺纹。彼此之间的主要区别是外螺纹牙底轮廓。

1948年以前,美国国家螺纹是北美洲的螺纹标准。 1948年,美国、加拿大和英国同意采用一种螺纹系统替代美国和加拿大用的美国螺纹以及英国用的惠氏螺纹。他们称这一新螺纹系统为统一螺纹,这正是今天通行全球的英制紧固件螺纹标准。

统一螺纹牙型实际上与已废除的美国国家螺纹的相同。按照两个标准生产的紧固件&功能上是可以互换的。

UN螺纹

UN螺纹牙型,正像最初设计的那样,在外螺纹牙底处有平轮廓和圆形轮廓两种。每个国家可以根据本国的标准来选择。美国趋向于选择平牙底,虽然普遍认为如果将牙底做成圆角可以减少应力集中。但经济上会有所付出。滚丝牙板和刀具都&昂贵,如果用圆牙顶的模具来生产紧固件螺纹的圆牙底,无疑会多多少少增加成本。另外,也有争论说,新刀具会磨损,加工几百个工件后,牙顶便会被磨圆,再加工出的螺纹便会开始接近理想的牙型轮廓。

UNR螺纹

20世纪50年代,紧固件性能的要求急剧提高,尤其是在容易产生疲劳载荷的场合,紧固件的安全性是关键因素。提高紧固件的抗疲劳性能势在必行。一个显而易见的方法就是要求外螺纹牙底轮廓做成规定的圆弧。这便导致设计和引入了一套改进的螺纹牙型――UNR,它与UN唯一的不同在于其强制性地要求最小圆弧半径(极限值0.108-0.144倍的螺距)。最小半径(0.108P)是能够与UN牙型配合而不超出外螺纹最小实体牙型的最宽半径。最大半径(0.144P)是指在最大实体牙型下能够容纳而不产生与内螺纹的理论间隙的最宽半径。

初次接触时,要特别注明是UNR螺纹,以确保交货时紧固件为圆弧牙底。但是如今,无论是谋昝魇荱NR,事实上公称尺寸为1 in和更小的紧固件,100%都是UNR螺纹。这是因为这类尺寸的紧固件通常采用滚压螺纹,现在的标准规定滚丝板为圆牙顶。对于较大尺寸紧固件,除滚丝外,螺纹可以车削加工。如果需要圆底,必须特别指出是UNR,否则供货很可能是UN螺纹。

 UNK螺纹

UNR螺纹出现后不久,又经过了进一步修改,定义为UNK。

UNK螺纹只是比NUR更精密,牙型和牙底圆弧半径极限值与NUR完全相同。其区别在于外螺纹的小径有偏差,必须检查牙底,以确保圆弧半径在规定的极限值范围内。UNK螺纹已用于圆柱头内六角螺丝和沉头螺丝标准。

1979年螺纹通止量规系统(见 A-63页ASME B1.3M)建立后,UNK螺纹开始被淘汰。原因是用量规系统22检测UNR螺纹(与通止量规系统的目的是相同的)可以代替UNK螺纹。

UNJ螺纹

UNJ螺纹的设计来源于优化螺纹牙型的研究――即在不损失静强度特性的条件下具有超常的抗疲劳性能。换句话说,牙底圆弧的作用能发挥多大?

其结果是一种新的牙型诞生,定义为UNJ,牙底圆弧半径极限值为0.150-0.180倍的螺距。具有这种增大圆弧,外螺纹小径就会增大并超出UN及UNR螺纹的基本牙型。结果,为避免配合螺纹间出现过盈,UNJ内螺纹的小径不得不随着增大。这意味着UNJ螺纹的螺纹接触高度会稍微缩短。但是,通过采用3A/3B级螺纹公差(UNJ螺纹所用标准公差)可以补偿此强度损失。这一公差标准可以使内、外螺纹的最小实体牙型优化。

UNJ螺纹现在是航空紧固件标准,在高度专业化的工业应用中时也有使用。

螺纹配合

UN内螺纹应与UN和UNR外螺纹配合。实际上,不存在UNR内螺纹。

理论上,UN内螺纹不能与UNJ外螺纹装配。但是,很多大型紧固件应用商多年来一直采用这种组合并没有发现问题。计算机研究也证实,成品加工件之间的实际过盈危害可以略不计。尽管如此,不建议采用这种配合,尤其是带有涂层的紧固件。

UNJ内螺纹可与UNJ外螺纹装配,也可与UN和UNR配合。但是,后者配合在使用时应该小心,因为UNJ内螺纹增大的小径会减小外螺纹的螺纹牙底区抗剪切强度。

对牙底圆弧半径的其他一些认识

对于UN螺纹,没有规定牙底圆弧半径,牙底可能是平的。 对于UNR螺纹,最小牙底半径为0.108P,对于UNJ螺纹为0.150P。很难想象如此微小的差异会如此重要,但确实是这样。

外螺纹牙底成圆弧会稍稍增加紧固件的静拉伸强度。原因是几何形状。随着圆弧半径的增大,小径增大而且螺纹的截面积也增大。但是,这种面积增大十分微小,可以忽略。在应力计算中,所有牙型都用同一拉伸应力面积。

牙底做成圆弧的最主要作用是增强紧固件的抗疲劳性能。

通常,机械紧固件在连接装配后都要承受某种程度的动载荷。只有极其个别的情况保持对睾桑完全不受应力波动、振动、横向应力、冲击或碰撞的影响。幸好,只在极少数连接设计中单纯把紧固件自身的疲劳特性做为主要考虑因素。但就是在这类场合也不能忽视任何提高抗疲劳性能的机会。这正是牙底做成圆弧的原因。牙底圆弧半径越大,紧固件的抗疲劳性能越好。

应力区内的疲劳失效通常发生在高应力集中区――例如槽口或横截面形状剧烈变化处。对于螺纹,截面变化和螺纹牙底都相当于槽口,特别容易受到损伤。 螺纹牙底的应力集中程度最高。应力集中系数的大小直接与牙底是否要加工成圆弧相关。

计算螺纹的应力集中系数是一项极其复杂的工作。结果也不总是可靠的。因此,已经利用物理的研究方法,如光弹性分析,来研究螺纹圆弧对抗疲劳性能的影响。一个普遍认可的结论是:当所有参数(如紧固件尺寸、螺距、材料、加工方法等)一致,唯一不同是牙底圆弧时,应力集中系数能够从尖底或平底UN螺纹的6降为UNJ螺纹的3。即只将牙底加工成圆弧就可能使抗疲劳寿命提高2倍。研究还表明,这一论点适用于所有强度等级的紧固件。

内螺纹牙底通常不为圆弧。规定牙底圆弧就意味着要用圆牙顶攻丝。这样做的额外费用会增加成本。幸好在常规设计的螺栓、螺母连接组合中,螺母的强6要大于螺栓,其目的是万一发生失效,总是外螺纹件失效。要更好理解这一点,请参考B-30页的螺栓/螺母可接受性论述。

螺纹系列

螺纹系列是几组直径/螺距的组合,由一系列直径和每英寸的牙数来区分。统一螺纹系统有11个标准螺纹系列。只有3种对机加工紧固件最6要――粗牙(UNC),细牙(UNF)和8牙(8-UN)。

如今的统一粗牙螺纹是以19世纪中期惠氏发明的螺纹系列为模板。他选择相对粗大螺距的螺纹,多半是由于当时有限的加工水平。多年之后,随着生产能力的提高,生产更精密、更细螺距的螺纹成为可能。出现了许多专用螺距系列,现在称为统一细牙系列是最受欢迎的一种。随着螺纹加工技术的提高,两种螺纹系列(粗牙和细牙)显然不能满足所有的工程应用。结果,螺距系统中又加进许多恒定螺距系列,8-UN就是其中之一。这种系列只有一个螺距,适用于系列内所有直径。

细牙与粗牙螺纹

细牙与粗牙螺纹各自的优点一直是紧固件业界激烈争论的问题。

支持细牙螺纹的人指出:

由于拉伸应力区面积较大,细牙的抗拉强度较高。

由于细牙的小径较大,抗扭转和横向剪切强度的能力较高。

细牙螺纹能够更好地拧入薄壁工件,拧入硬制材料>更容易。

因为其螺旋线角度较小,可以更接近调整精度。达到螺栓预载荷所需力矩较小。在容易出现振动的场合防松性更好。

在后几项讨论中,第一点(调整精度)是明显的。其他两点(力矩小和防松)不太具有说服力。因为相对于对防松影响更大的其他因素,粗牙和>牙在这点上的区别很小。

支持粗牙的列举了下列优点:

在相同接触长度上,粗牙螺纹的抗剪切强度较高,尤其是内螺纹。

因为随着螺距增大,牙底处的应力集中系数减小,粗牙产品应该表现出更好的抗疲劳性能。

粗牙更能承受搬运和船运过程中的野>作业。

螺纹不容易交错,安装和拆卸更快更容易。

当发生螺母受载膨胀而引起有害的螺纹旋合总长减小时,以及由于腐蚀造成强度减小时,粗牙更具保护性。

2A/2B等级配合使螺纹具有较大的最小间隙,允许螺纹进行较厚的涂层或镀层。

对于易碎或易剥落的脆性材料,粗牙更适合。

上述争执持续多年,无论是粗牙还是细牙哪一方都没有获得绝对的支持――一个合理的说法是:都有优缺点。过去20年可以看出趋势现在已经逐渐转变为:粗牙螺纹更受欢迎。其原因主要是由于简单的螺纹更具经济效益,而并非具有其他技术优势。

在北美,尺寸小于No 0(0.190 in)和大于1 in的细牙紧固件实际上是不存在的。粗牙紧固件在从最小尺寸到最大尺寸范围内的所有紧固件产品中都普遍存在。对于大于1 in的紧固件,8牙系列和粗牙螺纹同样受欢迎。

螺纹配合等级

螺纹配合是匹配螺纹间松紧6取E浜系燃妒悄凇⑼饴菸苹本偏差与公差的特定组合。

统一英制螺纹的外螺纹有3个螺纹等级――1A,2A,3A;内螺纹也有3个等级。全部为间隙配合,即无过盈装配。等级数字越大,配合越紧。代号“A”表示外螺纹,代号“B”表示内螺纹。1A和1B级配合是最松配合,3A和3B配合是最紧配合。

另外,还有一种5级螺纹配合。5级配合是一种过盈配合,即内、外螺纹尺寸非常精确,配合螺纹间产生过盈配合。5级过盈配合仅适用于1 in和更小尺寸粗牙系列螺纹。参见A-86页的ASME/ANSI B1.12。

1A/1B等级

1A 和1B等级S是松配合螺纹公差,仅外螺纹有基本偏差。当快速简便的安装与拆卸作为设计考虑的首选要素时,这些螺纹最适用。它们仅适用于1/4 in 和更大尺寸系列的粗牙和细牙螺纹。这些等级很少用于机加工紧固件。实际上,整个北美洲生产的紧固件中采用这种配合等的可能不超过0.1%。

2A/2B等级

到目前为止,在英制机加工紧固件中2A 和2B 是最受欢迎的螺纹等级。北美生产的所有商品级和工业用紧固件中差不多90%采用这种螺纹配合。2A级外螺纹有基本偏差。2B级内螺纹无基本偏差。对于绝大多数工程应用,2A 和2B级可提供最佳的螺纹配合,使紧固件性能、加工方便性和经济性之间达到最大平衡。

3A/3B等级

3A和3B等级螺纹适用于紧公差紧固件,如内六角螺丝,定位螺丝,航天用螺栓和螺母,连接杆螺栓及其他高强度螺栓。在这些工作场合中,安全性是设计首选要素。3A和3B级具有最严格的公差,无基本偏差。

螺纹配合的其他问题

一种螺纹配合的错误理解认为:公差越紧,配合越紧,装配质量越高,工作性能越好。但是,这好像是一个幻觉,看起来明明对,但常常是错误的。设计人员优先选择紧配合螺纹可能会产生意料不到的装配问题,并增加不必要的成本,还有其他各种原因。

图4是1/2-13 UNC螺纹公差与基本偏差的对应关系。对于外螺纹,1A和2A等级有基本偏差,3A级没有。1A公差比2A级大50%,3A级只有75%。对于内螺纹,3个等级都没有基本偏差。2B级公差比2A级大30%。1B级比2B级大50%,3B级为75%。

螺纹设计基本要素 title=

图4   1/2-13 UNC螺纹配合等级中,中径基本偏差与公差的对应关系

强度

配合螺纹的强度取决于螺纹旋合是否具有足够的旋合长度和接触高度。接触高度指径向重迭距离,旋合长度是(纵向)轴向接触的螺纹数量。

参照各种不同的螺纹等级,很明显,紧公差配合等级3A/3B的承载能力更强一些。但这并不完全正确,实际上,估计不出最紧与最松配合间拉伸强度的变化。原因是每个等级的允许公差带内大部分是相拥摹

20世纪40年代,IFI的一名顾问,麻省技术研究所的E.A.Buckingham 教授对不同尺寸和材料的紧固件做了一系列拉伸强度试验。唯一的变量是螺纹配合。 他总结到:“就这些拉伸试验来看,1级配合和3级配合一样好。如果螺栓为脆性材料,采用比1级更紧的硬畈⒚挥腥魏斡攀啤”

当然,Buckingham 教授当时试验的紧固件采用的是已经淘汰的美国国家螺纹牙型。但是,这些紧固件的螺纹配合与统一螺纹系统是相同的。他补充到:

“没有任何明确的试验数据能够支持这样的观点,即直径上的螺纹配合越紧,泳豆差越小,螺栓和螺母装配后强度越大。”

他接着说到,“有时较松的配合比紧配合表现出更高的弹性极限载荷承载能力。这可能是由于较松配合的额外间隙允许两体相对对方进行各自定位,这使得载荷分布更均匀。”