动画说明摆线的形成原理
摆线(cycloid)是数学中众多的迷人曲线之一.它是这样定义的:一个圆沿一直线缓慢地滚动,则圆上一固定点所经过的轨迹称为摆线.
到17 世纪,人们发现摆线具有如下性质:
1.它的长度等于旋转圆直径的 4 倍。尤为令人感兴趣的是,它的长度是 一个不依赖于π的有理数.
2.在弧线下的面积,是旋转圆面积的三倍。
3.圆上描出摆线的那个点,具有不同的速度——事实上,在特定的地方它甚至是静止的。
4.当弹子从一个摆线形状的容器的不同点放开时,它们会同时到达底部
x=r*(t-sint); y=r*(1-cost)
r为圆的半径, t是圆的半径所经过的角度(滚动角),当t由0变到2π时,动点就画出了摆线的一支,称为一拱。